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Abstract-This paper examines certain axisymmetric contact, crack and inclusion problems related
to a nonhomogeneous elastic medium where the two elastic parameters are periodic functions of
the axial variable z. A general formulation ofthe equations governing the axisymmetric deformations
of the medium is presented. It is shown that the mixed boundary value problems can be reduced to
a set of two ordinary differential equations and a Fredholm integral equation of the second kind.
The ordinary differential equations are solved in a numerical fashion, and these solutions are used
to evaluate the kernel function of the Fredholm integral equation. The resulting integral equations
governing the contact problem are also solved via a numerical technique to obtain the load­
displacement relationship fm a rigid circular indentor in smooth contact with a periodically non­
homogeneous elastic halfspace region. The procedures are extended to examine the problems
associated with a penny-shaped crack and a rigid disc inclusion embedded in such a non­
homogeneous elastic medium.© 1998 Elsevier Science Ltd.

I. INTRODUCTION

The classical theory of elasticity has been successfully applied to examine a variety of
contact problems of technological interest (Galin, 1961 ; Ufliand, 1965; Selvadurai, 1979;
Gladwell 1980; Johnson, 1985). In classical studies, the emphasis is on the modeling of the
homogeneous medium eith,~r as an isotropic elastic or transversely isotropic elastic solid.
Extensive studies related to halfspace regions indented by axisymmetric and nonsymmetric
indentors are documented in the references cited previously. These studies have also been
extended to include frictional constraints at the contact region (Spence, 1968; de Pater and
Kalker, 1975; Turner, 1979).

Contact problems involving nonhomogeneous elastic media are generally regarded as
non-classical problems in the theory of elasticity. In these problems, the isotropic or
anisotropic elastic constants are assumed to be functions of the spatial variables. The
applications of the theory of elasticity for a nonhomogeneous elastic material for the
solution of contact and other traction boundary value problems are given by Korenev
(1957), Mossakovskii (1958), Rakov and Rvachev (1961), Belik and Protsenko (1967),
Gibson (1967), Stachowicz (1968), Gibson et al. (1971), Awojobi and Gibson (1973), Kassir
and Chuaprasert (1974), Gibson and Sills (1975) and Selvadurai et al. (1986). Recently,
Selvadurai (1996) has applied the theory ofelasticity for a nonhomogeneous elastic medium
to examine contact problems related to nonhomogeneous elastic media where only the
linear elastic shear modulus varies exponentially with the axial coordinate and is finitely
bounded within a halfspace: region. Selvadurai (1996) also gives an extensive review of the
application of the theory of elasticity for a nonhomogeneous elastic medium to a variety
ofcontact problems and other traction boundary value problems where the elastic constants
vary with the axial coordinate.

This paper examines the problem of the axisymmetric indentation of the surface of a
nonhomogeneous elastic solid in which the elastic properties are assumed to be harmonic
functions of the axial coordinate. This type of elastic nonhomogeneity is a useful approxi­
mation for modeling certain problems of technological interest. For example, in connection
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with laminated materials consisting of alternate layers of isotropic materials, the diffusion
of adherents and cherr.icals can initiate changes in the elastic properties (both increases and
decreases in the stiffness characteristics) in the separate layers. Alternatively, composites
could be fabricated with surface treated layers which will have the appropriate variations.
Also, in the context of geological media, the periodic elastic nonhomogeneity serves as a
useful approximation for the study of sedimentary geological materials with a depositional
history (Tschebotariolf, 1973).

This paper presents the general formulation of the problem governing the axisymmetric
deformations of the medium where the two elastic parameters are functions of the axial
variable z. It is shown that the mixed boundary value problems associated with contact,
crack and inclusion problems can be reduced to a set of two ordinary differential equations
and a Fredholm integral equation of the second kind. The ordinary differential equations
are solved by the differential equation solver COLSYS, and these solutions are used to
evaluate the kernel function of the Fredholm integral equation. The Fredholm integral
equation governing be mixed boundary value problem is then solved numerically to
evaluate the load-displacement relationship for the rigid circular indentor. These numerical
results illustrate the manner in which the periodic variation, and in particular a harmonic
variation in the linear elastic shear modulus, influences the axial stiffness of the rigid
indentor. The procedures are extended to examine the mixed boundary value problems
associated with a penny-shaped crack and a rigid disc inclusion embedded in such a
nonhomogeneous elastic medium of infinite extent.

2. FUNDAMENTAL EQUATIONS

We restrict our attention to axisymmetric deformation of the nonhomogeneous elastic
medium which is charlcterized by the displacement vector

(1)

which is referred to a cylindrical coordinate system. The non-zero components of the strain
tensor 8ij are given by

aUr
0 ! (aUr + auz)

ar 2 az ar

0
Ur 0 (2)8ij= r

! (aUr + auz) 0
auz

2 az ar az

The state of stress in the elastic medium is given by the stress tensor (Jij referred to the
cylindrical coordinate system;

o

o
(3)

The linear elastic stre!;s-strain relationship for the nonhomogeneous elastic medium takes
the form
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(4)

where ekk = err + e08 + ezz = e; 0u is Kronecker's delta function and G(z) and v(z) are, respec­
tively, the linear elastic shear modulus and Poisson's ratio which depend only on the axial
coordinate z. Formulation presented in this section applies to general variations of G(z)
and v(z). Using eqns (2) and (4), the non-trivial equations of equilibrium can be expressed
in the form

(5)

(6)

where V2 is the axisymmetJic form of Laplace's operator referred to the cylindrical coor­
dinate system, i.e.

(7)

For the solution of the displacement equations of equilibrium (5) and (6), we introduce
Hankel transform representations of the displacement components (Sneddon, 1951)

ur(r, z) = 1'" U(s, z)A(s)I] (rs) ds

uz(r, z) = I'" W(s, z)A(s)Io(rs) ds

(8)

(9)

where A(s) is an arbitrary function and In(rs) is the nth order Bessel function of the
first kind. Using the above integral representations for the displacement components, the
equilibrium eqns (5) and (6) can be reduced to the following forms

d 2 U dU 2(l-v) 2 S dW
- +q(z)- - s U- ---- -q(z)sW = 0 (10)
dz2 . dz 1-2v 1-2v dz

d 2 W dW 1-2v 2 s dU V

dz2 + [p(z)+q(z)] & - 2(l-v)s W+ 2(l-v) dz + [p(z) + I_v q(z)]sU= 0 (11)

where

[
I - 2V(Z)] d [ v(z) ] 1 dG(z)

p(z) = -I _ v(z) dz 1-2v(z)' q(z) = G(z)~. (12)

In order to formulate the mixed boundary value problem related to the contact, crack and
inclusion problems, we require expressions for the stress components (Jzz and (Jrz' Sub­
stituting the expressions (8) and (9) into eqns (2) and (4), we obtain
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2G(z)[l-v(z)] roc [dW V(Z)SUJ
(Jzz(r, z) = 1-2v(z) Jo & + I _ v(z) A (s)Jo(rs) ds (13)

(14)

3. THE INDENTATION PROBLEM

In this section we consider the problem of the smooth indentation of the surface of a
nonhomogeneous elastic ha1fspace region by a circular indentor of radius a (see Fig. I).
The problem is axisymmetric and the mixed boundary conditions associated with the
indentation are as follows:

uz(r,O) =~, r ~ a (15)

(Jzz(r,O) = 0, r > a (16)

(Jrz(r,O) = 0, r ~ O. (17)

In addition to the abDve boundary conditions at z = 0, the displacement and stress fields
should satisfy the regularity conditions, U i ~ 0 and (Jij ~ 0 as z ~ 00. Considering these
conditions and the expressions (8) and (9) for the displacement components Ur and u" we
have

U(s, 00) = W(s, 00) = O. (18)

The shear stress boundary condition (17) gives the result

[ dU -SwJ = O.
dz z~o

(19)

To ensure a well-posed boundary value problem for the ordinary differential eqns (10) and
(II), a further boundary condition is required at z = O. Considering the linearity of these
two equations, we can impose, without any loss of generality, the following regularity
condition on W

z
Rigid circular

indentor ~

0r----.,.,.... G(z)

hl

Z (21tZ)
G(z)=G, + G,cos -h-

Fig. I. Rigid circular indentor in smooth contact with a nonhomogeneous elastic halfspace region.
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W(s,O) = 1.
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(20)

It can be shown that the mixed boundary conditions (15) and (16) and the relevant integral
expressions for Uz and (Jzzlead to the following system of dual integral equations

f" W(s, O)A(s)Jo(rs) ds = ~; r ~ a

fOO [dW VSUJ-d:; + -1- A (s)Jo(rs) ds = 0; r> a.
0" v z=o

(21)

(22)

Once solutions are obtained for U and W, the system of integral eqns (21) and (22) are
dual integral equations for the function A(s). By introducing the substitutions

[
dW VSUJ

sR(s) = -d+~
z v z=o

we can rewrite the dual system (21) and (22) as

and B(s) = A(s)R(s) (23)

1C<J sB(s)Jo(rs) ds = 0; r> a.

Considering the finite Fourier transform representation for B(s) in the form

2~faB(s) = - lj>(t) cos(st) dt
n 0

(24)

(25)

(26)

it is evident that the traction boundary condition (25) is automatically satisfied and the
displacement boundary condition (24) gives rise to a single integral equation of the form

ra
nJo K(x, t)lj>(t) dt = 2

where the kernel function K(x, t) is given by

K(x, t) = 1C<J [R~)1=0 cos(st) cos(sx) ds.

(27)

(28)

Upon solving the ordinary differential equations (10) and (11), the kernel function (28) can
be evaluated and the integral equation (27) can then be solved by employing a standard
numerical technique [see e.g. Delves and Mohamed (1985)].

For the contact probl,em, the total force and indentation relationship is of particular
interest to technological applications. With given indentation ~, the total force Pc can be
t:valuated by considering the equilibrium of the indentor, i.e.
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f
a 8G(0)A[1- v(O)] fa

Pe == 2n 0 mzAr,O) dr = 1-2v(0) 0 4>(t) dt. (29)

It is also of interest to examine the reduction to the limiting case of a homogeneous isotropic
elastic solid which is defined by the limits G(z) = const = G and v(z) = const = v. In this
case p(z) = q(z) = 0, and the differential equations (10) and (II) give the solutions

I
U(s,z) = 2(1-v) [(2v-I)+sz]e- SZ (30)

(31)

which lead to the well-known Boussinesq's result for the load-displacement relationship
for a rigid circular indentor in smooth contact with a homogeneous elastic halfspace region
with elastic constants G = G] and v [see, e.g. Gladwell (1980)]

4G t Aa
Peo = -1-­

-v
(32)

where we have assumed that A occurs in the direction of the applied force Pea. Note that in
the homogeneous case [W/R(s)L=o is a function of v only and the kernel function K(x, t)
given by (28) is a delta function.

4. NUMERICAL SCHEME AND RESULTS

It is unlikely that we can find exact closed form solutions or analytical solutions for
the set of two ordinary differential equations for arbitrary choices of nonhomogeneity.
Consequently, it is necessary to solve them numerically. In this section we present some of
the key features of the: numerical scheme, which are followed by numerical results for the
indentation problem rdated to a periodically nonhomogeneous halfspace.

By introducing the substitutions

z
S=sa, z=­

a

and a non-dimensiona.l variable

X= sz = SZ

the equations governing the displacement variables U and W can be rewritten as

d2 U dU 2(I-v) I dW
-+Q(X)----U----Q(X)W=O
dX2 dX 1-2v 1-2v dX

(33)

(34)

(35)

d2 W dW 1-2v I dU [ VQ(X)]
dX2 +[P(X)+Q(X»)dX-2(1-v)W+ 2(I-v)dX+ P(X)+~ U=O (36)

where
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[1-2VJ d[ v J 1dG
P(X) == I-v dX 1-2v' Q(X) = GdX'
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(37)

Using these substitutions and T = tla, we can rewrite the Fredholm integral equation in
the following dimensionless form

where

II n
o K(X, T)¢(T) dT = 2

K(X, T) == 1'" [~ : ~] cos(ST) cos(SX) dS.

dX I-v x~o

(38)

(39)

In the ensuing, we shall restrict attention to the consideration of a nonhomogeneous elastic
halfspace region where only the linear elastic shear modulus varies according to a harmonic
relationship and Poisson's ratio is a constant; i.e.

G(z) ,= GI +G2 cos C~z). v(z) = v = const (40)

where h is the periodicity in the variation of the shear modulus in z-direction. For this
particular nonhomogeneity, we have

P(X) = 0,
Q(X) = - [ (2na:!\J

hS I +Xcos ---,;s)
(41)

where X= G2/G I • It should be noted that, the specific choices for Gh G2 and v can only be
assigned values which will ensure pointwise positive definiteness of the strain energy function
in the domain of interest. In general, it is noted that the positive definiteness constraints
take the form

G(z) > 0, -1 < v(z) < 1/2 (42)

for the halfspace region with rE(O, (0), ZE(O, (0).
The set of differential equations (35) and (36) can be solved numerically by using the

boundary value problem solver COLSYS described by Ascher et al. (1981). Note that the
domain for these differential equations is [0, (0). In order to take full advantage of the
collocation procedure used in COLSYS, we introduce the following change of variable

(43)

which transforms the infinite domain (0, (0) to a finite domain [0, 1). With this trans­
formation, eqns (35) and (36) are reduced to the following
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d 2 W dW
-2 +{C+CdP(Y)+Q(Y)]} dY
dY -

(45)

where

(46)

(47)

Also we note that, from the definition of the kernel function (39), the solutions of U, W
and their derivatives are required only at one end, X = 0, of the interval. Once U, Wand
d W/dX are known at X = 0, the kernel function (39) can be evaluated and the Fredholm
integral equation (38) can then be solved.

The accuracy of the numerical evaluations of the integral equation depends not only
on accuracy with whi:h the solutions of the differential equations can be found, but also
on the accuracy with which the kernel function K(X, T) can be evaluated. The evaluation
of the kernel function which contains an oscillatory integrand is approached by using a
technique which takes full advantage of the periodicity of the oscillatory factor in the
integrand. By using this method, the integral of any function/(x), which is integrable on
the infinite domain [0, (0), can be reduced to an integral of a new function g(y) over a finite
domain [0, 1] :

1:1) :I) f2
(k+ 1)1tia 2n II

I(s) cos(as) ds = L I(s) cos(as) ds = - g(y) cos(2ny) dy
o k~O 2k1tia a 0

where

oc [271: ]g(y) = k~O1 -;(y+k)

is a periodic function with period of unity. Considering that

(48)

(49)

. [ W ]hm
S-oc dW + vU

dX I-v X~O

we can rewrite the function as

2(1-V)2

2v-l
(50)

[
W] 2(1-V)2

dW + vU = 2v-l +F(S).

dX I-v X~O

(51)

Therefore, the kernel :ounction K(X, T) can be expressed in terms of F(S) and the Fredholm
integral equation of the first kind can be represented as a Fredholm equation of the second
kind
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Fig. 2. Contact problem: variation of the nondimensional force Pc with respect to the ratio G,/G,
for v = 0.3 and various values of a/h.

2(1 V)2 r'
~~ ¢(X) + Jo K*(X, T)¢(T) dT = I

where

I100

I100

K*(X, T) = - F(S) cos [(X + T)S] dS+ - F(S) cos [(X - T)S] dS.
n 0 7l: 0

(52)

(53)

The integral equation (52) can now be solved by using a quadrature technique similar to
that outlined by Delves and Mohamed (1985).

The numerical procedures, outlined previously, are used to determine the function ¢,
which in turn could be used to evaluate the load-displacement behavior for the rigid circular
indentor. Only the final results of the numerical analysis are presented in Fig. 2, in which
p, = PelPeO ' From Fig. 2 we can see that the total force Pc required for a given indentation
reduces dramatically if local defects (where G(z) ~ 0 when G2/G j ~ 1 for some z) exist.
Figure 2 also shows us that Pc generally decreases when alh increases.

5. APPLICATIONS TO CRACK AND INCLUSION PROBLEMS

The mathematical and numerical procedures outlined in the previous section can also
be adopted in a very straightforward way to examine other axisymmetric mixed boundary
value problems associated with nonhomogeneous elastic media. The governing integral
equations and numerical results for these problems are summarized here for completeness.

5.1. A disc inclusion problem
We examine the problem ofa rigid circular disc inclusion ofradius a which is embedded

in bonded contact with a nonhomogeneous elastic medium of infinite extent with a constant
Poisson's ratio and a harmonic variation in the linear elastic shear modulus which is
symmetric about z = 0 (see Fig. 3). The inclusion is subjected to an axisymmetric force PI
which induces a rigid displacement ~ in the z-direction. Owing to the asymmetry in the
deformations about the plane z = 0, the integral equation problem can be formulated as a
mixed boundary value problem applicable to a halfspace region (z ~ 0) with the following
mixed boundary conditions
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G(2:)=G, + G2COS ( 2~Z )
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i)

C
i)
~ ~G2

G, :)

C-r-+--i:7-+ G(z)
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.......)

q
)

C
)

I:

Fig. 3. Rigid circular disc inclusion embedded at a nonhomogeneous elastic interface.

uz(r,O) = w(r) = L\; r::S a (54)

(55)

u,(r,O) = 0; r ~ O. (56)

It must be emphasized that these boundary conditions are applicable to distributions of
G(z) which are symmetric about z = O. This requirement is automatically satisfied by the
variation of G(z) given by (40).

As with the indentation problem, the disc inclusion problem can be formulated as a
set of ordinary differential equations and a Fredholm integral equation of the second kind.
The differential equations are the same as eqns (35) and (36) for the indentation problem,
but with different boundary conditions. The Fredholm integral equation takes the form

3-4v ra

2(2v-l) t/J(x) + Jo K] (x, t)t/J(t) dt = I (57)

where

2 r'" {[WJ 3-4v }K] (x, t) = ; Jo R z~ 0 - 2(2v _ 1) cos(sx) cos(st) ds. (58)

The force-displacem~nt relationship for the rigid disc inclusion can be obtained by con­
sidering the equilibrium of the inclusion, i.e.

ra + _ 16G(0)L\(l- v) ra

PI= 2n Jo[o-zz(r,0 )-o-zz(r,O )]rdr= 1-2v Jo t/J(t)dt (59)

where 0+ and 0- refer to surfaces of the disc inclusion in contact with the halfspace region
z > 0 and z < 0, respectively.
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Fig. 4. Inclusion problem: variation of the nondimensional force P, with respect to the ratio G,/G,
for v = 0.3 and various values of a/h.

Z

h

(
2ltz )

G(~)=G, + G2COS -h-

""T""+---H+ Gi(z)

Fig. 5. A penny-shaped crack in an elastic medium with a periodic nonhomogeneity.

Numerical results for the stiffness of the disc inclusion, applicable to the periodic
variation in the linear elastic shear modulus (40) are presented in Fig. 4. In these rep­
resentations the nondimensional force PI is given by

(60)

and PIO = 32G1aA(1- v)/(3 -4v) is the total force required to induce a displacement A in a
disc inclusion which is embedded in a homogeneous elastic infinite space region with a
constant shear modulus Gj •

5.2. A penny-shaped crack problem
We examine the problem of a penny-shaped crack of radius a, which is located in an

isotropic elastic medium with a periodic variation in the linear elastic shear modulus and
constant Poisson's ratio (se:e Fig. 5). The nonhomogeneity is characterized by (40) which
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restricts symmetric distributions of G(z) about z = O. It is assumed that the crack is located
at the plane z = O. The infinite medium containing the penny-shaped crack is subjected to
a uniform far field axial tensile stress (Jo. Owing to the symmetry of the crack problem
about z = 0, it is possible to formulate the crack problem as a mixed boundary value
problem applicable to the halfspace region z ~ 0. The mixed boundary conditions governing
this problem are as follows

(Jrz(r, O) = 0; r > °

uz(r,O) = 0; r ~ a.

(61)

(62)

(63)

The crack problem can also be reduced to a set of ordinary differential equations, which
are identical to those for the indentation problem, and a Fredholm integral equation, which
takes the form

where

~v-l) la
2x

---'---2 X(x) + K 2 (x, t)x(t) dt = - -
2(l-v) 0 1t

2100 {[RJ (2V-l)} .K2(:C, t) = - W - 2 sm(sx) sin(st) ds.
1t 0 X~o 2(l-v)

(64)

(65)

A result of some importance to fracture mechanics concerns the evaluation of the crack
opening mode stress intensity factor at the crack tip. It can be shown that the non­
homogeneous material property described in eqn (40) does not affect the (r_a)-1/2 stress
singularity as obtained for the homogeneous material, i.e.

K 1 0
O'zz(r, 0) = +O([r-a]).

~2(r-a)
(66)

The stress intensity factor K" however, is altered depending upon G}, G2 and v through
x(a), i.e.

(2v-I)(Jox(a)
K1 = .

2(l-v)\/~
(67)

In Fig. 6 we present r,~sults for the nondimensional mode I stress intensity factor at the tip

2 -

1.8 -

1.6 -

1.4 -

1.2 -

0.7

1l~~~0'2~
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

§.
G,

Fig. 6. Crack probkm: variation of the nondimensional stress intensity factor £, with respect to
G2/G, for v = 0.3 and various values of a/h.
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of the penny-shaped crack located in a nonhomogeneous medium with shear modulus given
by (40). The non-dimensional stress intensity factor KI is defined as

(68)

where Kro = 2aoj;/n corresponds to the mode I stress intensity factor for a penny-shaped
crack located in a homogeneous medium, which is subjected to a far field axial stress. We
note that K Io is independent of the elastic constants of the medium.

6. CONCLUSIONS

The periodic elastic nonhomogeneity considered in this paper is intended to model the
mechanical behavior of laminated materials where the boundaries between laminations
can experience alterations in the elastic properties. The paper develops the mathematical
fOIIDulation of a class of axisymmetric mixed boundary value problems related to inden­
tation, inclusion and crack problems. In all these cases the problems are reduced to the
solution ofa Fredholm integral equation of the second kind. The kernel functions associated
with these integral equations are derived from the solution of a pair of coupled ordinary
differential equations. The accuracy in the numerical solution of these differential equations
is a prerequisite for the accurate numerical solution of the Fredholm integral equations.
The numerical procedures outlined in the paper can be utilized to evaluate results of specific
interest to technological applications. These include the evaluation of the stiffness of an
indentor resting in smooth contact with an elastic halfspace, the compliance of a disc
inclusion embedded in bonded contact with an elastic infinite space and the stress intensity
factor at the tip of a penny-shaped crack. It is shown that the results for all these situations
can be evaluated to illustrate the influence of the periodic nonhomogeneity. It is shown
that the influence of the periodic nonhomogeneity on the compliance of either the indentor
or the inclusion becomes significant when the periodicity of the homogeneity (h) is large in
comparison to the radius (al of the indentor or the inclusion. For the case of the penny­
shaped crack, the mode I stress intensity factor at the crack tip increases with G2/G 1 and
the nondimensional ratio a/h. The analysis and the numerical procedures presented in the
paper are sufficiently general that the influence of the variability in Poisson's ratio can
be readily incorporated in the numerical treatments. Similar conclusions apply to the
examination of contact problems where the axisymmetric indentor has an arbitrary profile.
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